Veranstaltungstitel
Machine Learning
Veranstaltungsinformationen
Bildungsart | Fortbildung/Qualifizierung |
Abschluss | alfatraining-Zertifikat |
Unterrichtsform | E-Learning, Blended Learning, Virtuelles Klassenzimmer |
Schulart | Einrichtung der beruflichen Weiterbildung |
Veranstaltungsort
Es ist kein Veranstaltungsort zugewiesen |

Kosten/Gebühren/Förderung
Förderung: | Förderung mit Bildungsgutschein |
Sonstige Förderung: | Bildungsgutschein (Arbeitsuchende und Arbeitslose), WeGebAU (Beschäftigte), Europäischer Sozialfonds ESF (Kurzarbeit oder Transfergesellschaften). Weitere Förderstellen: Berufsförderungsdienst (BFD), die Berufsgenossenschaft (BG) sowie der Rentenversicherungsträger (DRV). |
Dauer und Termine
individueller Einstieg | Nein |
Unterrichtszeiten | Montag bis Freitag von 08:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr). Präsenzunterricht mit Videotechnik. |
Bemerkungen | Kursstart alle 4 Wochen |
Bildungsanbieter
alfatraining Bildungszentrum GmbH |
Kriegsstraße 100 |
76133 Karlsruhe |
Baden-Württemberg |
Telefon: | 0800 / 3456500 |
Telefax: | 0721 / 3545019 |
Internet: | http:/ |
E-Mail: | kursnet@ |
Infomaterial des Bildungsanbieters: | http:/ |
Anbieterbewertung
Datenlage nicht ausreichend
Erläuterungen
Der Wert "Datenlage nicht ausreichend" wird angezeigt:
|
Fachkundige Stelle / Zertifizierer
zur Zertifizierung von
Managementsystemen
August-Schanz-Straße 21
60433 Frankfurt am Main
Sonstiges
Teilnehmeranzahl: | 6 bis 25 |
Zugang
Zugang: | Grundlagenwissen in Python wird empfohlen. |
Zielgruppe: | Informatiker/-innen, Mathematiker/-innen, (Wirtschafts-)Ingenieure/-innen, Elektrotechniker/-innen |
Inhalte
Machine Learning
Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen
Überwachtes Lernen (ca. 5 Tage)
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten
Unüberwachtes Lernen (ca. 5 Tage)
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen
Evaluierung und Verbesserung (ca. 2 Tage)
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Veröffentlichungsinformationen
Aktualisiert am: 13.12.2020 | Veranstaltungs-ID: 92902972 | Bildungsanbieter-ID: 188844 |